Digital Electronic Circuits

Architecture and circuit implementation of Mixed signal systems

Kanazawa University Microelectronics Research Lab. Akio Kitagawa

0.1 Summary of syllabus

Objective of this course

- 1. The circuit implementation of the signal processing procedure is shown by the concrete examples, especially analog-to-digital converter and digital-to-analog converter design.
- 2. You will learn semi-custom design methods with hardware description language (HDL). Following this, you may get started with the design of a custom LSI and FPGA (Field Programmable Gate Array) which have it's own distinctive features.

Schedule

- 1. Guidance for this subject
- 2. Laplace transform and Z transform
- 3. Transfer function
- 4. Digital and analog circuit implementation 1
- 5. Digital and analog circuit implementation 2
- 6. Oversampling converters
- 7. Nyquist rate converters
- 8. Quiz
- 9. Introduction of hardware description language
- 10. Example of HDL coding
- 11. HDL simulation (workshop)
- 12. Logic synthesis (workshop)
- 13. Place and Route (workshop)
- 14. Verification of your design (workshop)
- 15. Specification of your custom LSI or micro-art (workshop)
- 16. Submission of the report

References

- For students who wants to learn the practical CMOS analog mixed-signal circuit design
 - R. Jacob Baker, CMOS: Mixed-Signal Circuit Design,
 2nd Edition, ISBN 978-0-470-29026-2, Wiley-IEEE
 Press (2009)
- Course wares
 - http://jaco.ec.t.kanazawa-u.ac.jp/edu/
 - http://cmosedu.com/
- The course material for the design project is available on the web site.
 - http://jaco.ec.t.kanazawa-u.ac.jp/edu/digi/lab2/

Requirements to pass through

- Passing mark in the total score is over 60% for each quarter.
- Digital electronic circuits A (Lecture)
 - Assignment: 40%
 - Final exam (Quiz): 60%
- Digital electronic circuits B (Lab course)
 - Attendance rate: 40%
 - Submission of the data of your design: 60%

0.3 Demarcation between analog and digital?

Advantages and disadvantages of technology scaling

Figure of merit (FOM) of analog circuits

- Before ITRS2004 edition: FOM was defined for each category of circuits.
 - LNA: Low noise amplifier
 - VCO: Voltage controlled oscillator
 - PA: Power amplifier
 - ADC: Analog-to-Digital converter
 - SerDes(SERializer/DESerializer)

$$FOM_{LNA} = \frac{G \cdot IIP3 \cdot f}{(NF - 1) \cdot P}$$

$$FOM_{VCO} = \left(\frac{f_0}{\Delta f}\right)^2 \frac{1}{L\{\Delta f\} \cdot P}$$

$$FOM_{PA} = P_{out} \cdot G_p \cdot PAE \cdot f^2$$

$$FOM_{ADC} = \frac{(2^{ENOB_0}) \cdot f_S}{P}$$

$$FOM_{SerDes} = \frac{R_B \cdot R_{MuxDeMux}}{P}$$

$$FOM_{SerDes} = \frac{R_B \cdot R_{MuxDeMux}}{P}$$

P: Power consumption

IIP3: Third Order Input Intercept Point

NF: Noise figure L: Spurious power PAE: Power efficiency ENOB₀: Effective number of bits

f_s: Sampling frequency

R_R: Data Rate

R_{MuxDeMux}: Bit count of parallel data

Performance of ADC architecture

Quiz

Which circuit is better for a sensitivity and a signal-to-noise ratio?

Suggested answer

Why is the increment of 1bit equivalent with the amplification of 6dB (2 times)?

Suggested answer

Maximum number of N-bit binary code = 2^N -1 Dynamic range of N-bit binary code system = $(2^N - 1)/1$ Maximum number of (N+1)-bit binary code = 2^{N+1} -1 Dynamic range of (N+1)-bit binary code system = $(2^{N+1} - 1)/1$

Then, the amplitude of signal that is equivalent for the differential dynamic range between (N+1)-bit and N bit system is corresponding to $(2^{N+1} - 1)/(2^N - 1) = 2 = 6.02dB$

Note that this calculation is made on a condition of M = 0 (no noise shaping) and OSR = 1 (no oversampling). More precise analysis is shown in next slide.

Speed = Accuracy = Gain

SNR for quantization noise and ENOB(Effective number of bits) in oversampling condition

$$SNR_{\text{max}}[dB] = 6.02 \cdot N + 1.76 - 20 \cdot \log\left[\frac{\pi^{M}}{\sqrt{2 \cdot M + 1}}\right] + (20 \cdot M + 10) \log OSR$$

$$ENOB[bit] = 1 + \frac{1}{6.02} [(20 \cdot M + 10) \log OSR - 20 \log(\frac{\pi^{M}}{\sqrt{2 \cdot M + 1}})]$$

M: Order of noise-shaping transfer function

OSR: Oversampling ratio

Example

Speed
$$\longrightarrow$$
 Accuracy \longrightarrow Gain

 $M = 0$, OSR = 128, then ENOB = 4.5[bit], \triangle SNR_{max} = 27[dB]

 $M = 1$, OSR = 128, then ENOB = 10.6[bit], \triangle SNR_{max} = 64[dB]

NOTE: The theoretical base will be discussed later.

0.2 Introduction

Growing information technology toward a real world and an daily life

Keywords: Wireless communication, Energy Harvesting, Sensor integration An analog mixed signal (AMS) LSI is fundamental to advanced electronic systems.

Growing semiconductor market

Japanese people should revise the wrong perspective on the semiconductor economy.

Recent trends of technology drivers

- AI processor (non-von Neumann computers)
- Nano-power devices (Energy harvesting)
- Integrated sensors (Bio-chip, humansensory, Ultra-high precision)
- Ultra-high-speed & Terra-storage (Big data)

Transformation of industrial structure

Semiconductor technology designed by users in the new era

Development examples in Kanazawa University

Active oxygen sensor (Sensor Expo Japan)

Example of Mixed-Signal LSI

Typical radio receiver architecture

Signal processing of Hartley radio receiver

 $\omega_{RF} = \omega_{LO}$ Direct conversion $\omega_{RF} = \omega_{LO}$ Low IF (Intermediate Frequency)

Digital design flow

Analog design flow

Design flow of mixed signal LSI

Hierarchical layout design technique

Top-down (Standard cells, Gate array)

System

Block division

Functions

Logic synthesis

Logic

Place & Route

Layout

Manufacturing

Bottom-up (Full-custom)

Manufacturing

System

Integration

Functions

Manual wiring

Layout

Layout editor

Transistor circuit

Implementation method of designed circuits

Full-custom

Structure of SRAM

Standard cell

2-input AND cell

Structure of cell base IC

Gate Array

- The master slice is provided by manufacturer.
- The circuits and metal wire is designed by customer.

Analog master slice

Structure of FPGA

Local wiring and crossbar switch

Function block (Xilinx)

Structure of CPLD

