
1

Introduction to Verilog HDL

Behavioral description of logic circuits
with Verilog HDL (IEEE1364)

1. Overview

2

3

Steps of Learning HDL
• Goal of this class

– Understanding a description for logic synthesis
– Understanding a description for simulation

• Goal of Integrated Circuit Design and Practice
– Understanding an architecture of microprocessors with HDL

including
• BUS
• Memory
• Instruction set
• Various arithmetic algorithm
• Parallel processing and pipeline control

• Moreover…
– Usage of intellectual properties (IPs)

References in Japanese

• 深山正幸他 「HDLによるVLSI設計」第2版, 共
立出版 ISBN 4-320-12027-2

• You can find many references on web sites, for
example,
– http://cas.eedept.kobe-u.ac.jp/~arai/Verilog/chap5.html
– https://furien.jp/columns/303/

4

HDL Simulator

• ModelSim - Intel FPGA Edition (Lite)
https://www.intel.co.jp/content/www/jp/ja/sof
tware/programmable/quartus-prime/model-
sim.html
• See Appendix 1a and 1b.

5

LSI/FPGA design flow with HDL

6

HDL coding

Functional simulation

Logic synthesis

Timing simulation

LSI or FPGA implementation

Device verification

Behavioral description in RTL
(Register Transfer Level)

Test bench description

Test bench description + Cell library

VCD (Value Change Dump)

Required and generated dataDesign tools

HDL simulator

Stream data

Logic synthesizer

Logic tester

HDL simulator

Structural description (Netlist)

Foundry

7

The purpose of HDL description

HDL description

Logic design

Functional verification
before synthesis

Timing verification
after synthesis

Test pattern generation

Purpose

Logic synthesis
(Register Transfer Level)

Test pattern generator
+

Logic tester or Emulator

Method

HDL simulation
(Any statement is
available.)

Logic tester in Kanazawa University: http://jaco.ec.t.kanazawa-u.ac.jp/edu/vlsi/ni6570/

2. HDL description in RTL

8

RTL: register transfer level
means the level of detail which describes the digital processing
and controlling the signal flow for each clock edge. The logic
circuit can be absolutely synthesize from the description.

Combinational logic with assign statement

9

module adder16 (a, b, sum, co);
// 16 bit Adder
input [15:0] a, b;
output [15:0] sum;
output co;

wire [15:0] a, b, sum;
wire co;

assign {co, sum} = a + b;

endmodule

16bit Adder
Module declaration

Port declaration
(input | output) [MSB:LSB]

Note: [MSB:LSB] is optional for 1bit port

Type declaration
Note: You can omit the type declaration of wire.

An assign statement for logic value of wire
Note: The assignment statements are concurrently
executed when the value of the right side is updated.
{high-order bits, low-order bits} is a concatenation
operator.

(Overflow flag)

The end of statementNo ";" after endmodule

// Comment

Combinational logic with always statement

10

module adder16 (a, b, sum, co);
input [15:0] a, b;
output [15:0] sum;
output co;

wire [15:0] a, b;
reg [15:0] sum;
reg co;

always @(a, b) begin
{co, sum} <= a + b;

end
endmodule

16bit Adder

(Overflow flag)

No ";" for end and endmodule

The always-block is started when the value in
@(variables) is updated.
The multiple always-block works simultaneously.
An procedural assignment for logic value of reg.
Note: All "<=" statements in a always-block are
executed when the always statement is asserted. An
"<=" statement is also called non-blocking
assignment.

Module declaration

Port declaration

Type declaration of reg (register) and wire

11

Assignment and variable types in RTL
Statement Type restriction Location Execution timing

assign a = b; left side： wire
right side： reg or wire

outside of always
block

When the right
side is updated.

a <= b;
(non-blocking
assignment)

left side: reg
right side： reg or wire

inside of always
block

When the always
block is asserted.

Note: Normally, the register (D-FF) is synthesized by the non-blocking assignment to
the reg variable, however, the always block which does not synchronize the clock does
not generate the register.

Conditional assign statement

12

Note: The non-blocking assignment is
normally used to describe the functions of the
information processing. The assign statement
is useful to output the value of the registers
from the output port.

assign x = (c == 1'b1) ? a : b; if (c == 1) x = a;
else x =b;

Verilog HDL C

13

Variable types in RTL
Type declaration Application Remarks
reg a;
reg [15:0] a;

Logic variable of the register left side of <=

wire a;
wire [15:0] a;

Logic variable of the wire
The declaration of wire can be
omitted.

left side of
assign =

integer a; Do not use the integer for the logic
variables. This type is dedicated to
the bit number or loop counter.

Do not assign to
reg and wire.

Constant and Literal

14

Statement Description Remarks

parameter a = 0; Declaration of constant A type of parameter
depends on the initial
number.

a <= 8'b00001111; Binary number
a <= 8'd15; Decimal number
a <= 8'h0f; Hexadecimal number

Bit

Radix
Logical value

0
1
X Undefined
Z High-impedance (no drive)

Sequential logic with always statement

15

module integrator16 (a, clk, x);
input clk;
input [15:0] a;
output [15:0] x;

wire clk;
wire [15:0] a;
reg [15:0] ar, x;

always @(posedge clk) begin
ar <= a;
x <= ar + x;

end
endmodule

16bit Accumulator

The multiple "<=" is simultaneously executed. Thus, the value of the register "ar" in 2nd line is
different from the 1st one. This is really different from the programing language See next slide.

The always-block is started in synchronization with the
edge of the clk signal. The rise edge and fall edge is
specified by using the keyword "posedge" or "negedge".

An assign statement for logic value of reg. A register
circuit is synthesized by the edge sensitive non-
blocking assignment.
Note: All "<=" statements in a always-block are
executed when the always statement is asserted.

16

Non-blocking assignment in always block

always @(posedge clk) begin
b <= a + b ;
c <= b – c ;

end

before clock edge
(This value is calculated
by last edge.)

after clock edge

If a = 1, b = 1, and c = 1 before the clock
edge, b and c on the left is updated b = 2 and
c = 0 after the clock edge.

Synchronized assignment Expected circuit for the description

clk

d

q

d q

The result is different from a procedural language.

Truth table with case statement

17

module dec3 (address, word);
input [2:0] address;
output [7:0] word;

wire [2:0] address;
reg [7:0] word;

always @(address) begin
case (address)

3'b000 : word <= 8'b00000001;
3'b001 : word <= 8'b00000010;
3'b010 : word <= 8'b00000100;
3'b011 : word <= 8'b00001000;
3'b100 : word <= 8'b00010000;

3bit Decoder

3'b101 : word <= 8'b00100000;
3'b110 : word <= 8'b01000000;
3'b111: word <= 8'b10000000;
default : word <= 8'bxxxxxxxx;

endcase
end

endmodule

address word
000 00000001
001 00000010
010 00000100
011 00001000
100 00010000
101 00100000
110 01000000
111 10000000

3'b 3bit binary number
4'h0 4bit hexadecimal number

A "default" assignment is
recommended in a case statement.

Conditional branch with case statement

18

module mux4 (a, b, c, d, sel, x);
input [3:0] a, b, c, d;
input [1:0] sel;
output [3:0] x;

wire [3:0] a, b, c, d;
wire [1:0] sel;
reg [3:0] x;

always @(a or b or c or d or sel) begin
case (sel)

2'b00 : x <= a;
2'b01 : x <= b;
2'b10 : x <= c;
2'b11 : x <= d;

4bit MUX

default : x <= 4'bxxxx;
endcase

end
endmodule

State transition with if-else statement

19

module count8 (clk, rst, en, q, co);
input clk, rst, en;
output [7:0] q;
output co;

wire clk, rst;
wire co;
reg [7:0] q;

always @(posedge clk) begin
if (rst == 1'b0)

q <= 8'b00000000;
else

q <= q + en;

8bit Binary counter

end

assign co = &q;

endmodule

0
1

2

3

255

rst = 0

en = 1
en = 1
en = 1

en = 1

en = 0

en = 0

en = 0
en = 0

en = 0

en = 1

Processing content:
Unary operation "&" performs
AND operation for all digit.
Thus, if q = 255, then the "1" is
outputted from co port.

Synchronous reset

State transition driven by the
clock edge. The processing
contents is written in another
always-block or assign
statement.

Asynchronous reset

20

module jcnt4 (clk, rst_b, pr_b, q);
input clk, rst_b, pr_b;
output [3:0] q;
reg [3:0] q;

always @(negedge rst_b or negedge pr_b or posedge clk) begin
if (!rst_b) begin

q <= 4'h0;
end
else if (!pr_b) begin

q <= 4'hf;
end
else begin

q <= q << 1;
q[0] <= ~q[3];

end
end

endmodule

4bit Johnson counter

Asynchronous reset

0000 → 0001 → 0011 → 0111 → 1111 → 1110 → 1100 → 1000 → 1000

21

Hierarchically organized description

module a

module b

module c

DefinitionInstantiation

module a(in, out);

a i0 (.in(w1), .out(w2));

Module definition

Instance call

Verilog HDL

Instance name

Definition name

Top module

i0

i1

Port connection

Sub-module

Sub-module

Sub-module

Structured description
and instantiation

22

module sub(A, B, I, F);
input [15:0] A, B;
input I;
output [16:0] F;

wire [15:0] A, B;
wire I;
reg [16:0] F;
reg [15:0] CMP;

add16 i0(.a(A), .b(CMP), .ci(I), .sum(F));

always @(B, I) begin
if(I == 1’b0)

CMP <= B;
else

CMP <= ~B;
end

endmodule

module add16 (a, b, ci, sum);
input [15:0] a, b;
input ci;
output [16:0] sum;

wire [15:0] a, b;
wire ci;
reg [16:0] sum;

always @(a, b, ci) begin
sum <= a + b + ci;

end
endmodule

Add

A

B

F

0 1 I 0: ADD
1: SUB

Call

4. HDL description of test bench

23

The test bench includes the DUT (Device Under Test) or UUT(Unit Under
Test), the sequence of the input vector, and the directive to the simulator,
which can be described by HDL code in any level of detail.

24

HDL Simulation
• Functional simulation

– Logic simulation without respect to a gate propagation delay
and the wiring delay.

– A functional simulation is performed to verify the HDL
description.

• Timing simulation
– The logic simulation with considering a delay times
– A timing simulation is performed to detect the malfunction.
– After synthesis

• A gate propagation delay is considered and the wiring delay is
approximately estimated from a statistical data.

– After place and route
• A gate propagation delay and the accurate delay time of each wire are

considered.

25

Structure of Test bench
• A test bench includes input vectors, instances of DUT, and directives to

specify output signals.
• A test bench is not only an external system of DUT, but also a module

in an uppermost layer. Thus, the test bench does not have any port.

DUT (Device Under Test)

Test bench
Specifying the
output signal

Stimulus (Input
vector)

26

Declaration and Instantiation
`timescale 1ns/1ns

module tb_count8;
reg r_clk, r_rst, r_en;
wire [7:0] w_q;
wire w_co;
integer i;

// Half Cycle of Clock
parameter hf_cycle = 50;

// Instance of Module count8
count8 i0(.clk(r_clk), .rst(r_rst), .en(r_en), .q(w_q), .co(w_co));

Continuing

The type of signals are declared to be "reg"
for input of DUT, and to be "wire" for
output of DUT.

The parameter definition of half cycle is useful for the

DUT(Device under Test)

No port in a test bench.
unit / precision, It has no effect in synthesis.

27

Generation of test vector
// Test Vectors
initial begin

r_rst <= 1'b1;
r_en <= 1'b1;

#(2*hf_cycle) r_rst <= 1'b0;
#(2*hf_cycle) r_rst <= 1'b1;
#(512*hf_cycle) r_en <= 1'b0;

end

// Clock Generation
initial begin

r_clk <= 1'b0;
for (i = 0; i < 519; i = i + 1)

#(hf_cycle) r_clk <= ~ r_clk;
$finish;

end
endmodule

Waiting time

Finish of Simulation.

The simulation is started
from initial block.

r_clk

r_rs t

r_en

w_q (期待値)

w_co (期待値)

X 00 01 02 03 FF 00

X

w_q (result)

w_co (result)

"initial" block

• An "initial" statement is performed only once after
starting the simulation.
– Important: Do not use "initial" statement in a

description to synthesize a circuit, because the real
circuit cannot wait the initialization process to finish by
oneself.

– The initialization process of can be described in an
always-block started by the external signal such as PoR
(Power-on reset) or CS (chip select).

28

29

Blocking assignment in always-block
• A blocking assignment is sequentially executed in an

instruction order.
• Do not use a blocking assignment for the synthesis,

because the blocking assignment in the always-block
generates a latch circuit and it is difficult to determine the
ordering relations between the blocks.
assignment state assign b = a;

assign c = b;
c != a

Non-blocking
assignment

always @(a, b) begin
b <= a;
c <= b;

c != a

Blocking
assignment

always @(a, b) begin
b = a;
c = b;

c == a

5. Example of Lticka circuit

30

Learn the simple example of HDL description in RTL and test bench.

Top module

31

module LED(WIDTH, CLK, RST_B, OUT);

input [3:0] WIDTH; // Duty Ratio (0 - 15)
input CLK, RST_B; // Clock, Reset
output OUT; // Blinking PWM Output

wire dout, pout;

// Structure of Modules
DIV div1(.CLK(CLK), .RST_B(RST_B), .DOUT(dout));
PWM pwm1(.WIDTH(WIDTH), .CLK(dout), .RST_B(RST_B), .POUT(pout));
BLNK blnk1(.IN(pout), .RST_B(RST_B), .OUT(OUT));

endmodule

Divider

32

module DIV(CLK, RST_B, DOUT);

parameter NDIV = 15; // Bit of Divider
input CLK, RST_B; // Clock, Reset
output DOUT; // PWM Output
reg DOUT;
reg [NDIV-1:0] div;

always @(posedge CLK or negedge RST_B) begin
if(!RST_B) begin

div <= 0;
DOUT <= 1'b0;

end
else begin

div <= div + 1;
DOUT <= (&div) ? ~DOUT : DOUT;

end
end

endmodule

Pulse width modulator

33

module PWM(WIDTH, CLK, RST_B, POUT);

input [3:0] WIDTH; // Pulse width
input CLK, RST_B; // Clock, Reset
output POUT; // PWM Output
reg POUT;
reg [3:0] count;

always @(posedge CLK or negedge RST_B) begin
if(!RST_B) begin

POUT <= 1'b0;
count <= 4'b0000;

end
else begin

count <= count + 4'b0001;
POUT <= (WIDTH >= count);

end
end

endmodule

Blinking

34

module BLNK(IN, RST_B, OUT);

parameter Nper = 256; // Period of blinking
input IN, RST_B; // Input, Reset
output OUT; // Blinking Output
reg [8:0] cnt;

always @(posedge IN or negedge RST_B) begin
if(!RST_B) begin

cnt <= 9'b000000000;
end
else begin

cnt <= cnt + 9'b000000001;
end

end

assign OUT = (cnt < Nper) ? IN : 1'b0;
endmodule

Test bench

35

`timescale 1ns / 1ns
module tb_led;

// Inputs
reg [3:0] width;
reg clk;
reg rst_b;
// Outputs
wire out;

// Half cycle of clock
parameter hf_cycle = 1;
parameter Nstep = 1000000000;
parameter DUTY = 5;
integer i, j;

// Instantiate the Unit Under Test
LED uut (.WIDTH(width), .CLK(clk), .RST_B(rst_b), .OUT(out));

Test bench (cont'd)

36

initial begin
// Initialize Inputs
width <= 4'b0000;
rst_b <= 1'b0;

// Wait 100 ns for global reset
#(2*hf_cycle) rst_b <= 1'b1;

// pulse width modulation
for (j = 0; j < Nstep/(64*65536); i = i + 1)

#(64*65536*hf_cycle) width <= width + 1'b0001;
end
// Clock Generation
initial begin

clk <= 1'b0;
for (i = 0; i < Nstep; i = i + 1)

#(hf_cycle) clk <= ~clk;
$finish;

end
endmodule

Summary

• A logic circuit can be synthesized from HDL code written
in RTL.

• The test bench can be described by HDL code in any level
of detail by using # delay time.
– Type in RTL: wire, reg, and integer
– Assignment in RTL: assign statement or <=
– Synchronization with clock edge: always @(posedge or negedge)
– Do not use blocking assignment in RTL to exclude the timing

ambiguity.

• Structural description can be used for the hierarchal design.

37

Appendix 1a
1. Edit and save your Verilog HDL file.
2. Start Modelsim.
3. Menu - [File] - [Change Directory...], and choose your working

directory in which your Verilog HDL file is saved.
4. Click the Compile

button on the toolbar
and choose all
Verilog HDL files
to be simulated.

5. Click the Compile
button on the open
file selection dialog.

38

Appendix 1b
6. Confirm the error message in the Transcript window.
7. If you find the message "Errors: 0, Warnings: 0", click Done button the file

selection dialog.
8. Click the Simulation button.
9. Choose [work] - Your test bench file and click the OK button on "Start

Simulation" form.
10. Choose the name of the instance of DUT in the "Default" column in the left

side.
11. Choose the signal names monitored in the "Objects" column in the right

side and right-click.
12. In the pop-up menu, choose "Add Wave" to add the list of the signal names.
13. The waveform window is opened with the tracks of signals.
14. Click the "Run-All" button to start the simulation.
15. The simulation result is shown in the waveform window 39

