2.2 CMOS static logic gates

The design of primitive logic gates

CMOS

CMOS = Complementary MOS

This term has two meanings.

- The process technology to integrate p-ch MOSFETs and n-ch MOSFETs
- The circuit structure with p-ch MOSFETs and n-ch MOSFETs

MOSFET switch

MOSFET symbol with 3 terminals

MOSFET symbol with 4 terminals

 $V_G = Low$ $V_G = High$ Analogy of switch

Primitive logic gates

Combinational logic		Sequential logic	
1 stage	2 stages	Latch	Flip-flop
->	-D-		
Bo			
B			

The terminal of OUT is switched to VDD or GND.

Connection of body terminal

General form of the static logic

A pull-up network is a switch network for VDD. A pull-down network is a switch network for GND.

2-input switch networks

Function of 2-input NAND

Symbol

Note: If you cannot find the equivalent Boolean expressions, there is no logic circuit that consists of 1-stage.

Design of 2-input NAND $Y = \begin{cases} \overline{A} + \overline{B} \longrightarrow PUN \\ \overline{A \cdot B} \longrightarrow PDN \end{cases}$

Function of 2-input NOR

Symbol

A B Y

Truth ta	ble	de Morgan's laws	
AB	Y	$Y = \overline{A} \cdot \overline{B} \longrightarrow$	p-ch MOSFET network
0 0	1	$-\Lambda + \mathbf{D}$	a al MOCEET a strated
0 1	0	$= A + D \longrightarrow$	n-cn MOSFET network
1 0	0		
1 1	0		

Design of 2-input NOR

Design of AND, OR AND $\rightarrow A \cdot B = \overline{\overline{A} + \overline{B}}$ OR $\rightarrow A + B = \overline{\overline{A} \cdot \overline{B}}$

PUN and PDN cannot build the operations shown above.

AND operation and OR operation require 2 stage(*) logic circuits.

8-input NAND

$$Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H}$$
$$= \overline{(A \cdot B \cdot C \cdot D) \cdot (E \cdot F \cdot G \cdot H)}$$
$$= \overline{A \cdot B \cdot C \cdot D} + \overline{E \cdot F \cdot G \cdot H}$$
 de Morgan's laws

15

8-input AND

$$Y = A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H$$

= $(A \cdot B \cdot C \cdot D) \cdot (E \cdot F \cdot G \cdot H)$
= $\overline{\overline{A \cdot B \cdot C \cdot D} + \overline{E \cdot F \cdot G \cdot H}$ de Morgan's laws

Counting method of gate stages

A number of stages is defined as a maximum number of gate electrodes of MOSFET on the path from an input port to an output port.

Propagation delay

- A propagation delay (伝搬遅延時間) is defined as a time between 50% points of input and output.
- The propagation delay t_{logic} of the logic circuit is estimated from the number of stages *K* and the propagation delay t_d of 1stage gate. $t_{logic} = K \cdot t_d$

3-input AND-NOR gate 1

AND-NOR and OR-NAND are also called a complex gate (複合ゲート).

3-input OR-NAND gate 1

10 MOSFETs

Construction by PUN and PDN

