2.2 CMOS static logic gates

The design of primitive logic gates

CMOS

CMOS $=$ Complementary MOS

This term has two meanings.

- The process technology to integrate p -ch MOSFETs and n-ch MOSFETs
- The circuit structure with p-ch MOSFETs and n-ch MOSFETs

MOSFET switch

Primitive logic gates

Inverter

Schematic

The terminal of OUT is switched to VDD or GND.

Connection of body terminal

The MOSFET cannot turn on the GND.

A p-ch MOSFET can output VDD.

The MOSFET cannot turn on the VDD.

A n-ch MOSFET can output GND.

General form of the static logic

$\left\{\begin{array}{l}\text { A pull-up network is a switch network for VDD. } \\ \text { A pull-down network is a switch network for GND. }\end{array}\right.$

2-input switch networks

PUN consists of p -ch MOSFETs.

PDN consists of n-ch MOSFETs.

Function of 2-input NAND

Symbol

de Morgan's laws

A B Y 0 0 1	$\mathrm{Y}=\overline{\mathrm{A}}+\overline{\mathrm{B}} \longrightarrow$	p-ch MOSFET network		
0	1	1		
1	0	1		
1	1	0		$\overline{\mathrm{~A} \cdot \mathrm{~B}} \longrightarrow$

$\{$ (1) The expression of each variable negation
(2) The expression of the total negation

Note: If you cannot find the equivalent Boolean expressions, there is no logic circuit that consists of 1-stage.

Design of 2-input NAND

$$
\mathrm{Y}=\left\{\begin{array}{lll}
\overline{\mathrm{A}}+\overline{\mathrm{B}} & \longrightarrow \mathrm{PUN} \\
\overline{\mathrm{~A} \cdot \mathrm{~B}} & \longrightarrow & \mathrm{PDN}
\end{array}\right.
$$

Function of 2-input NOR

Symbol

Truth table		
A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

de Morgan's laws

$$
\begin{aligned}
\mathrm{Y} & =\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \longrightarrow \mathrm{p} \text {-ch MOSFET network } \\
& =\overline{\mathrm{A}+\mathrm{B}} \longrightarrow \mathrm{n} \text {-ch MOSFET network }
\end{aligned}
$$

Design of 2-input NOR

Design of AND, OR

$$
\begin{aligned}
\mathrm{AND} \longrightarrow & \mathrm{~A} \cdot \mathrm{~B}=\overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}} \\
\mathrm{OR} \longrightarrow & \mathrm{~A}+\mathrm{B}=\overline{\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}}
\end{aligned}
$$

PUN and PDN cannot build the operations shown above.

AND operation and OR operation require 2 stage $\left({ }^{*}\right)$
$D-\infty$ logic circuits.

* Stage: 段数

Multi-input gates

DO not over 4-input.

8-input NAND

$$
\begin{aligned}
\mathrm{Y} & =\overline{\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D} \cdot \mathrm{E} \cdot \mathrm{~F} \cdot \mathrm{G} \cdot \mathrm{H}} \\
& =\overline{(\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}) \cdot(\mathrm{E} \cdot \mathrm{~F} \cdot \mathrm{G} \cdot \mathrm{H})} \\
& =\overline{\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}}+\overline{\mathrm{E} \cdot \mathrm{~F} \cdot \mathrm{G} \cdot \mathrm{H}}
\end{aligned}
$$

8-input AND

$$
\begin{aligned}
\mathrm{Y} & =\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D} \cdot \mathrm{E} \cdot \mathrm{~F} \cdot \mathrm{G} \cdot \mathrm{H} \\
& =(\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}) \cdot(\mathrm{E} \cdot \mathrm{~F} \cdot \mathrm{G} \cdot \mathrm{H}) \\
& =\overline{\overline{\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}}+\overline{\mathrm{E} \cdot \mathrm{~F} \cdot \mathrm{G} \cdot \mathrm{H}}} \quad \text { de Morgan's laws }
\end{aligned}
$$

Counting method of gate stages

- A number of stages is defined as a maximum number of gate electrodes of MOSFET on the path from an input port to an output port.

Example of 2- stage gate

Propagation delay

－A propagation delay（伝搬遅延時間）is defined as a time between 50% points of input and output．
－The propagation delay $t_{\text {logic }}$ of the logic circuit is estimated from the number of stages K and the propagation delay t_{d} of 1－ stage gate．

$$
t_{l o g i c}=K \cdot t_{d}
$$

3－input AND－NOR gate 1

$$
\mathrm{Z}=\overline{(\mathrm{A} \cdot \mathrm{~B})+\mathrm{C}}
$$

10 MOSFETs

Construction by PUN and PDN
AND－NOR and OR－NAND are also called a complex gate（複合ゲート）．

3-input AND-NOR gate 2

3-input OR-NAND gate 1

$$
\mathrm{Y}=\overline{(\mathrm{A}+\mathrm{B}) \cdot \mathrm{C}}
$$

10 MOSFETs

Construction by PUN and PDN

3-input OR-NAND gate 2

