Mixed Signal LSI

Practical design method of CMOS mixed signal circuits

> Kanazawa University Microelectronics Research Lab. Akio Kitagawa

0.1 Introduction

Books of reference

- For students who wants to learn the practical CMOS analog circuit design (*)
 - R. Jacob Baker, CMOS: Circuit Design, Layout, and Simulation, <u>4th Edition</u>, ISBN 978-1119481515, Wiley-IEEE Press (2019)
 - R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, <u>2nd Edition</u>, ISBN 978-0470290262, Wiley-IEEE Press (2008)
 - 松澤昭,はじめてのアナログ電子回路実用回路編, ISBN 978-4-06-156545-6,講談社 (2016)
- Course wares
 - http://cmosedu.com/
 - * These books does not cover the RF (Radio-frequency) circuits.

I recommend the following book for RF circuit design:

- RF Microelectronics, B. Razavi, ISBN 0-13-887571-5, Prentice Hall (1998)

Course policy

- Download the lecture slide of the on the web site. http://jaco.ec.t.kanazawa-u.ac.jp/edu/
- 2. The course is provided by face-to-face classes.
- 3. If you have a question in the preparation and the review, post the question on the timeline of LMS. (Click the icon of a pen.)
- 4. Submit the assignment by the deadline.
 - Academic misconduct and scholastic dishonesty such as a plagiarizing or cheating on examinations can be assigned a penalty based on the University code.

Grading

- Grading policies
 - Regular assignments (100%)
 - The scores of your report taken will become invalidated, if you are late to submit the report. Don't miss the deadline of the submission.
 - However, even if the submission is delayed, it will be treated as a legitimate submission, when you can prove that you are not responsible. For example, an illness, an official event.

Q & A

- During class
 - Feel free anytime in the class.
- Office hours
 - 5th period on Friday
 - Request for an appointment.
- Timeline on WebClass
 - For questions about the lecture.
- Email
 - For questions about your grading, attendance.
 - kitagawa@merl.jp

Analog-mixed signal circuits in an IoT Era

- A main part of a digital system consists of digital circuits, however, the information in CPS is represented by an analog signal. For example, electromagnetic wave form in digital communication, light rays or radioactive rays in digital imaging, and chemical substances in medical and pharmaceutical applications.
- An analog-to-digital interface is required for all CPSs, because the analog circuits including the communication systems, sensor system and power controlling systems are controlled by software.
- The high-performance analog circuitry should be packaged in the black box in the mixed-signal systems and be accessed through the software interface from cyberspace.

Example of Mixed-Signal LSI

(RF signal generation) PLL

DSM (Frequency control)

A/D partition in mixed-signal LSI

Name of circuit block	Function	Analog/Digital	Remarks
AAF (Anti-Aliasing Filter)	Band-limitation	Analog	feasible only in analog
SF (Smoothing Filter)	Transformation from discrete time to continuous time	Analog	feasible only in analog
LNA (Low Noise Amp.)	Impedance matching	Analog	feasible only in analog
Mixer	Down-conversion and Up-conversion	Analog	for RF signal
		Digital	for BB signal
Power supply circuits (e.g. Regulator, Reference Voltage, Rectifier)	Voltage regulation, DC-DC conversion, Voltage/Current reference	Analog	
ADC (Analog-to-Digital Converter)	Analog-to-Digital conversion	Analog + Digital	
DAC (Digital-to-Analog Converter)	Digital-to-Analog conversion	Analog + Digital	
PLL (Phase Locked Loop)	RF frequency synthesis	Analog or Digital	
DSM (Delta-Sigma Modulator)	Digital frequency control of PLL	Digital	
Memory (Sens-Amplifier, Memory Cell, DLL)	Memory of digital data	Analog + Digital	
Processor (DSP, MCU)	Signal processing, system control	Digital	
Filter	Hardware signal processing	Analog	for RF signal
		Digital	for baseband

Wave forms in mixed signal circuits

Digital design flow

Analog design flow

CAD software

Structure of MOSFET and Bipolar Tr.

MOSFET

Bipolar Tr.

Transition frequency f_T depends on L_{eff} . Transition free

Transition frequency f_T depends on W_B .

NOTE: The peak transition frequency of bipolar transistor also depends on the base width W_B and the base resistance (small W_E is better). 15

Year

ITRS 2008 16

Performance of ADC architecture

Advantages and disadvantages of technology scaling

Figure of merit (FOM) of analog circuits

- Before ITRS2004 edition: FOM was defined for each category of circuits.
 - LNA: Low noise amplifier
 - VCO: Voltage controlled oscillator
 - PA: Power amplifier
 - ADC: Analog-to-Digital converter
 - SerDes(SERializer/DESerializer)
 - P: Power consumption
 IIP3: Third Order Input Intercept Point
 NF: Noise figure
 L: Spurious power
 PAE: Power efficiency

 $FOM_{LNA} = \frac{G \cdot IIP3 \cdot f}{(NF - 1) \cdot P}$ $FOM_{VCO} = \left(\frac{f_0}{\Delta f}\right)^2 \frac{1}{L\{\Delta f\} \cdot P}$

$$FOM_{PA} = P_{out} \cdot G_p \cdot PAE \cdot f^2$$

$$FOM_{ADC} = \frac{(2^{ENOB_0}) \cdot f_S}{P}$$

$$FOM_{SerDes} = \frac{R_B \cdot R_{MuxDeMux}}{P}$$

 $ENOB_{0}: Effective number of bits$ $f_{S}: Sampling frequency$ $R_{B}: Data Rate$ $R_{MuxDeMux}: Bit count of parallel data$ 19

Quiz

Which circuit is better for a sensitivity?

Suggested answer

Why is the increment of 1bit equivalent with the amplification of 6dB (2 times)?

Suggested answer

Maximum number of N-bit binary code = 2^{N} -1 Dynamic range of N-bit binary code system = Maximum signal/Minimum signal = $(2^{N} - 1)/1$ Maximum number of (N+1)-bit binary code = $2^{N+1} - 1$ Dynamic range of (N+1)-bit binary code system = $(2^{N+1} - 1)/1$

The amplitude of signal that is equivalent for the differential dynamic range between (N+1)-bit and N bit system is corresponding to $(2^{N+1} - 1)/(2^N - 1) \Rightarrow 2 \Rightarrow 6.02$ dB

Note that this calculation is made under the condition that no oversampling. More precise analysis is shown in next slide.

Speed - Accuracy - Gain

SNR for quantization noise and ENOB(Effective number of bits) in oversampling condition

$$SNR_{\max}[dB] = 6.02 \cdot N + 1.76 - 20 \cdot \log[\frac{\pi^{M}}{\sqrt{2 \cdot M + 1}}] + (20 \cdot M + 10) \log OSR$$

$$ENOB[bit] = 1 + \frac{1}{6.02} [(20 \cdot M + 10) \log OSR - 20 \log(\frac{\pi^{M}}{\sqrt{2 \cdot M + 1}})]$$

M : Order of noise-shaping transfer function OSR: Oversampling ratio

Example
$$\longrightarrow$$
 Accuracy \longrightarrow Gain
 $M = 0, OSR = 128, \text{ then ENOB} = 4.5[\text{bit}], \Delta SNR_{\text{max}} = 27[\text{dB}]$
 $M = 1, OSR = 128, \text{ then ENOB} = 10.6[\text{bit}], \Delta SNR_{\text{max}} = 64[\text{dB}]$

NOTE: The theoretical base will be discussed later.